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Abstract. We review a number of results relating the propagation of singular-
ities for hyperbolic partial differential equations — i.e. the persistence, or non-
localization, of wave motion — with well-posedness for some inverse problems of
reflection type, such as arise for instance in seismology and ultrasonics. By far the
most complete information is available for layered problems. We show how a simple
but refined propagation-of-singularities theorem, with estimates, yields important
functional properties of the model-data relationship for such problems, including
regularity in various useful coefficient classes, separation of scales, .... We explain
the essential role of travel time in the study of these problems, and show how its
function may be generalized to multidimensional (i.e. non-layered) problems.

1. Introduction. The “inverse problems in wave propagation” of the title are
idealizations of remote sensing techniques such as reflection seismology, ground-
penetrating radar, and pulse-echo ultrasonic nondestructive evaluation. A wave
of some sort is stimulated by an artificial energy source. It propagates into a
region containing the remote structure of interest; the changes in physical properties
through the structure cause some of the energy of the wave to be diverted into a
reflected wave or echo, which travels in roughly the opposite direction, back to a
region where the experimentalist has installed appropriate sensors and recording
devices. The records of reflected waves are to be analysed to reveal whatever can
be inferred about the physical properties of the remote structure.

Two conditions must be fulfilled for this scheme to work:

1. Energy, propagating in the form of waves, must penetrate the region of the
remote structure;
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2. A reflection or echo process must take place, partitioning the energy of the
wavefield.

The requirement that energy reach the target area in the form of waves (and
reciprocally, return from the target area as waves) rather than as a diffusion process,
say, is motivated by a need for spatial resolution in applications. Evidently the
resolution scale for a wave process might be measured in wavelengths, whereas
the resolution possible with measurements of diffusing fields is much harder to
understand.

Roughly speaking, wave processes are modelled by hyperbolic systems of partial
differential equations. The association is justified by the geometrical optics analysis
of high-frequency solutions, which has its modern expression in various propaga-
tion of singularities results. These theorems give precise statements to the effect
that a disturbance which begins coherently along a wavefront will continue in that
form, the wavefront moving in such a way that its orthogonal trajectories (in the
simplest cases) obey a system of ordinary differential equations. The description
of the disturbance thus obtained corresponds well to the physical notion of wave,
and appears to be correct when the coefficients of the hyperbolic system, which
parameterize local physics of the propagating medium, are smooth on the scale of
the wavelength of the disturbance.

In particular, when these coefficients are smooth on a scale much longer than
a wavelength, the geometric optics approximation predicts no reflected waves at
all. This prediction is borne out quite well by numerical experiments. Accord-
ingly, models of reflecting media must involve coefficients rough on the scale of a
wavelength, or finer. Morlet (1982) has made an extensive numerical study of the
reflection and transmission of plane waves in plane layered acoustic media (these
will be described below) — that is, the coefficients of the acoustic wave equation
are functions of one variable only. Such plane-layered models are widely used in
seismology, as for various reasons the mechanical properties of rocks often vary
mostly in the vertical direction. Morlet found that once the length scale of strong
variation in coefficients decreased to the level of a wavelength and the propagation
distance remained constant, the wave nature of the propagating disturbance was
strongly modified, and below some scale disappeared altogether: the wave did not
propagate through such strongly oscillatory media at all. Since no “energy” pen-
etrated the highly oscillatory region, there were no reflected waves out of which
to infer its structure. That is, the wave was localized in the complement of the
oscillatory region.

Thus models of media which are too smooth on the wavelength scale do not
generate reflected waves because all of the “energy” in the wavefield passes through
unaltered. Models which are too rough, on the other hand, generate no reflected
waves because no “energy” penetrates to be reflected. (“Energy” here merely means
some convenient measure of the local size of the field, which may or may not be
related to a physical energy.) Thus the questions are naturally posed:

L. Do there exist models of a degree of roughness/smoothness just right to per-
mit wave propagation and generate sufficiently informative reflected waves?

2. Do such models, if they exist, model real physical systems?



The first question is mathematical; partial answers will be sketched in the following
pages. The second question does not have definitive answers, so far as the author
is aware, though the motivation for question (1) is the appearance of experimental
data from a variety of subjects. Clearer answers to question (2) await a combination
of improvements in theory, numerical algorithms, and experimental technique.
While the generalities should be similar for the various physical models support-

ing wave propagation (electromagnetism, linear elastodynamics, ...), the details
are best understood for linear acoustics, governed by the linearized pressure equa-
tion )

-—IEM—V-EVu:F in R", n=1,2,3,...

pc? 0t? p
where u(z,1) is the (scalar, infinitesimal excess) pressure field in a fluid, p(z) is the
density in the equilibrium state, c(z) is the sound velocity, and the source term F
is the divergence of a body force. We shall consider both

(i) F vanishes, and u has the form of a plane wave
u(z,t) =U(t—0-z)

for large negative ¢ — sensible when p and c are constant in a half-space,
say (8§2-4);

(ii) u vanishes identically for large negative ¢, and F' has point support, i.e.
F(z,t) = f(t)8(z — =) (85)

The data of an inverse problem of the type considered here is the trace of the
pressure field u on a time-like hypersurface — we shall consider only a coordinate
hyperplane:

Slp,¢; Fl = ul

Of course, in reality, measured signals are sampled, both spatially and temporally,
and also filtered by the recording apparatus. In this paper we ignore such refine-
ments.

Since the local “physics” of this model are determined entirely by p and ¢, the
object of the inverse problem is to determine (to the extent possible) p(z) and ¢(z)
for z, # 0 from S[p,c; F]. (F will be regarded as known, though in fact it should
be included in the unknowns for many models).

By far the best results are available for the plane-wave problem for layered me-
dia, i.e. p = p(zn), ¢ = c¢(z,). In Section 2 we state a simple but quite precise
propagation-of-singularities result for such problems, and exhibit the plethora of
consequences which follow from it: regularity properties of the map S, rough cor-
respondence between scales in u and scales in p, c, etc. We describe key results in
the simplest form, and refer the reader to the literature for the most general ver-
sions. In §3 we show how these consequences of a refined propagation-of-singularity
result can be used to investigate the plane-wave-inverse problem. The end result
is a well-posedness result for “mildly rough” models: thus we are able to give an
affirmative answer to question (1) above in this special instance. A very important
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role is played in this development by the reparameterization of the layered model
by travel-time: without this device, essentially nothing can be accomplished, either
theoretically or numerically. In Section 4, we give a very brief treatment of rougher
media, for which a dichotomy of scales exists, so that homogenization estimates
can be used to reduce the problem to the mildly rough case.

The plane-wave/layered medium problems, while forming an excellent arena for
development of insight, offer limited opportunity for immediate practical applica-
tion. We consider the general multidimensional “point-source” problem (case (ii))
in §5. Very little is known about this class of problems, relative to the layered case.
We address two issues:

(1) proper definition of the map S on non-smooth coefficient classes;
(2) location of a substitute for the travel-time transformation.

For both issues, we can offer only fragmentary information. We are able, how-
ever, to explain the function of the travel-time transformation for the plane-layered
problems in such a way that its functional substitute for the non-layered problem is
(essentially) uniquely specified. We give a construction of this “multidimensional
travel-time transformation” under very restrictive smoothness assumptions, which
(despite the restrictions) indicates that such things are actually possible — this is
the only original result of the paper.

Most of the results and insights reported here are the result of joint work with
many colleagues insofar as they are due to the author at all. Especially Fadil
Santosa and Paul Sacks deserve much credit for whatever is worthwhile in the
following pages. Special thanks are also due to Rakesh, R.M. Lewis, Cheryl Percell,
and Gang Bao.

2. Some Simple Propagation-of-Singularities Results in Layered Media, and
Consequences. When the density p and sound velocity ¢ are smooth and functions
of only one space coordinate, say z, then the acoustic wave equation

1 9?

has plane-wave solutions, i.e. the pressure u(z, z,t) is in the form
u(z,z,t) = U(z,t — € - )

Such solutions exist for ¢ € IR" so long as ¢(2)[|¢| < 1 for all z. Evidently U is a
solution of 2 510
1/1 2) 1
“(=-pp) L - 2% p=y. 2.2
[p (02 €] ot? szaz] v (2:2)

Write v = (¢™2 — |¢[2)~% and suppress ¢ from the discussion for the remainder of
this section. If v = vy = const. for z < 0, and ao € IR, then there exists a unique
distribution solution to (2.2) with

U(z,t) = aoH(t — z/vo)



for ¢,2 < 0. Standard constructions, e.g. Courant and Hilbert (1962, Ch. V) imply
that U has the progressing wave expansion

U(z,t) = a(z,t)H(t — 7(2))

E |
7(2) = /0 -
is the travel time.

To pursue the agenda outlined in §1, one needs explicit estimates of @ in terms
of norms of p,c. Also, it will be advantageous to consider the slightly more general
problem

12U 5 (10
pv? 0t 0z \p 0z

where

po(2)8(t — 7(2)) + Pa(2)w(z, ) H(t — 7(2))
U = 0, t<<0

with tg,%; and w smooth. A simple calculation shows that we should take U =
aH(t — 1) with a the solution of the characteristic Cauchy problem

1 92 a (10
Zﬁa—ttj_ﬁ(;a_g = YhwH({t—71) for t > 7(2);

Ed;a(z,T(z))—a(Z)a(Z) = p(2)v(2)o(z), 2z>0
a(0,0) = ao (2.3)

where o(z) = £ (log pv)(2)). Following arguments in Symes (1986a; Section 1), we
obtain estimates for the “sideways energy form”
2)

1 r2T7-7(2) oU
Qr(z) = 2 /T(z) dt ( ot

2

L Jou
0z

of the form:

Qoo z(vy <
C (”?v[)()”%?[O,Z(T)] + a(z)”a”%?[O,Z(T)]

2T -7(z)
bz, sup {[77 iz} en

2<Z(T) (2)
for suitable C > 0 depending only on el o, zcoys 1ol s2j0,z¢ry)- Here
Z(T)=inf{z:7(2) > T}.

Since we also have control of the characteristic boundary condition a(z,7(z))
through (2.3), an identical bound follows for the H norm of U in L(T) = {(z,t) :
0 <2< Z(T), 7(2) £t < 2T — 7(2). On the other hand, (2.4) is stronger than
such a statement, and shows that the traces of first derivatives of U on the vertical
line segments {z = const.} are well defined.



Thus (2.4) is a rather strong propagation-of-regularity result — probably the
strongest that can be expected to hold uniformly over p,v in €N a bounded set
in Hlloc' It immediately allows us to extend the definition of various maps beyond
the class of smooth coefficients. For example, suppose that ag = 1, py, po both lie
in the same bounded set in Hl N C*, and v = 1. The difference V = U, — U,
satisfies

vV oV ov U,
97 o2 Ty~ (2 G

where o; = < log p; ¢ =1,2. From (2.4) with ¢pg =% = w = 0 and ag = 1, we get
dz gp’ g

a bound
2T —-7(2)
/ dt
7(2)

so we can use (2.4) again with ¥ =0, ¥ = 0y — oy, w = 0U,/0z, and ag = 0 to

get
2T—7(
/ ? g
7(2)
whence a Lipschitz estimate follows for the map

5+ logp € B0, 2(1)] = 20 (0,") € 17(0,21)

8U2

2.1 S Q(2) < Cllozll2p0,2(m

< Cllp2llao,zery

v |?
ot

a_V2

+8x

) < Clloz — 01||%2[0,Z(T)]

for example, uniform over bounded sets in H'[0, Z(T)] N C*(IR). Consequently
the map extends — in some sense, we have “solved” this singular problem with
non-smooth (H') coefficients.

In Symes (1986a) these arguments are developed further to show that Ss is
actually a C" diffeomorphism and further work along the same lines shows that S5
is C2. Tt is probably C*. Since S is differentiable, estimates for the derivative
are useful. It is possible to show, by very similar arguments, that the formal
linearization

(182 818) _ 919U

—_— _—— = U=0, t<<0
pv? Ot2 0z p Oz

actually defines the derivative

x 06U
DSs[p)ép = wTE (0,-) -

Moreover,

CullSpllapo,zery < 11D Ss[p18p | 20, 2¢ry < C*116p|| 30, 2(1)

where the constants 0 < C, < C* are uniform as log p ranges over bounded sets in
Hlloc' Similarly,

DSxlplép = 8U(0,)



satisfies 5
105k plépl| 20211 < CrllépllL2po, 2z
with another Hlloc—uniform constant Cg, though no lower estimate seems to obtain

for DS H.

These estimates show that there is approzimate separation of scales in the rela-
tion between coefficients and solution, in the following sense. A convolution kernel
f € & is elliptic on Hlloc if there exist constants Ko, K1, K* so that for u € H*(IR),

Kilulls = Kollullo < [|f * ully < K*||ullz -

For example, if |f(w)| > p for |w| > Q., then one could take crudely K; = p, Ko =

(1+ Qf)% p (much more precise statements are possible). Thus the relation between

the constants Ko, K1 measures the threshold of the “passband” of f. Such f may be

manufactured by subtracting from the Dirac § function a smooth approximation.

Without loss of generality we may assume that f is “causal”, i.e. supp f C [0, 00).
As a consequence of the above estimates for DS;s, the derivative of

S’f = f * g‘s
satisfies

|DS;[pl6pl| > f(1||5/’||H1[0,Z(T)]—f<0||5P|lL2[o,Z(T)+Zf]
— Knmi(N8pll a1 12(1), 2142 (2.5)

where K1, Ko and K,, depend on || log p|| 10, z(7)}, the constants K*, K; and Kj in
the ellipticity estimate of f, and K,, and Z; depend also on the first moment
$ —

sup
t0€R yeco(r)  ||@|Leo

of f.

The first two terms in the preceding estimate show that DS ¢ has essentially the
same “filter” or separation-of-scales effect as does f*, at least qualitatively. The
last term is necessary because the “breadth” of f, as measured by its first moment
my(f), may be nonzero, so that control of §3 7 1s needed over a slightly longer time
interval — or equivalently of §p over an “extra” depth interval — to ensure control
over ép on [0, Z(T)]. Both the coefficient K,,m;(f) and the size Z; of the extra
depth interval are O(m4(f)).

In order to deal with truly “bandlimited” kernels — ie. f € C$° as well
— higher-order estimates are needed. Suzuki (1988) showed (essentially) that
Sgr = 3/8155'5 obeys an estimate

||D§5/[p]5P”L2[0,2T] < Cal|6pll (0,21

using extensions of the arguments sketched above; the constant is uniform over
bounded sets in leoc' This estimate can be used to study S; when f* obeys an
estimate of the form

Killully = Kollullo = Kallullz < || f * ully < K*|Julls - (2.6)



Once again, this estimate can be interpreted loosely as identifying the “passband”
of f. If |f(w)| > p > 0 for Q. < |w| < N*, one can take K; = p, Ko = p(1 + Q*)%
as before and Ky = p(1 + Q*)~2. There results for DS s an estimate of the form

1DS;[0)6pl 2102y > f{lll‘SP”Hl[O,Z(T)]—RO”‘S/’“L"’[O,Z(T)]
— Ka||6pl 210,21
= Kevma(Hlépll 121y, 2(1) 42,1

all dependences being as before, except for K, which is

a) uniform over bounded sets in HZ _ for fixed f;
loc
(b) for p in a fixed bounded set in Hf. , K, = O(K,).

Thus the estimate is nontrivial if K, is small enough, i.e. if f is “close enough to
elliptic” relative to ||pl|g1[0,z(1y)-

To obtain similar results for the map v — U, or (p,v) + U, one must impose
much more smoothness on v, essentially because a change in v actually moves the
characteristics. See e.g. Lewis’s thesis (1989) or Symes (1986b). The diffeomor-
phism is lost: in metrics strong enough to make v + U differentiable, the derivative
is not coercive.

3. Travel Time and the Determination of “Mildly Rough” Coefficients. Maintain
the setting of the previous section, but now consider, for simplicity, the case
p = const. (= 1) instead. Introduce the (¢ravel-time) change-of-variable

z=17(2)

(NOTE: we are using “z” in a different sense than at the beginning of §2!) Denoting
by ¢ the inverse function of 7, so that

/C(Z) 1
T = -
o v

o(z) = v(((z)), Ule,t) =U(((x),1).

A short calculation verifies that

introduce

U(z,t) = H(t — z), z,t<0;
oz~ 9z2 "oz

where 6 = %log 0. Thus o plays exactly the same role as p did at the end of the
last section, hence the map

=0

Ss i e HY0,T) — %g(o,.) e L?*[0,2T]



is well-defined by continuous extension from & € C*, is a QZ diffeomorphism, and
all the “quasi-elliptic” estimates in §2 apply ipso-facto to S ¢ = f*Ss.

Remark In §5 some commentary is offered on the “real” significance of this change
of variable.

To understand how results about S s might yield information about v (rather
than ), examine the change-of variables operator:

Ml =vol(.
It is possible to show that
(i) M extends to a continuous map defined on the positive cone
Iv={ve Hlkoc[O, 00) : v(0) = vo,v(z) > 0 Vz}
and taking values in T'y, for k > 1;

(ii) M is nowhere locally uniformly continuous, hence a fortiori not differ-
entiable, in I'k.

(iii) Regarded as a map: Tj,9 — [k, M is differentiable.

For discussion and proofs of related results see Lewis (1989) and Symes (1986b).
The continuity result is due to Rakesh (unpublished).
Formally, the derivative of M is given by

SM(t) = v(C(t)) +v'(C(¢))6¢(2)
= (5v+vv'/oz%§)

Thus the “principal part” of §M is the change-of-variables for v, applied to v —
the simplest sort of Fourier integral operator. In fact, if we assume that v = const.
for large Z, then

z=((t)

%M[v] = / dk a(t, k)e“(O* (Z—:)A (k)

where the phase ( itself depends on v —i.e. dM/dz is a “nonlinear Fourier integral
operator.”

On the other hand, the appearance of v’ in the second term above hints at the
nondifferentiability of M : Ty, — T.

Now suppose that f is an elliptic convolution kernel, as in the previous section.
Appraisal of the “Garding” estimate (2.5) shows that, if 6 is sufficiently smooth
— that is, ||69||2 is sufficiently big relative to ||63||z: — the estimate has no
force. If 68 = 6 M, with smooth §v, however, it may be that év (rather than 6%) is
controlled. In fact, if ||v’|| g1 is large, one might suspect that the second term in the
expression for §M dominates || f £¢||.2, hence (for smooth 6v) ||6v]|L itself. This
idea is embodied in the “rough/smooth” lemma (see Symes (1988), Lemma 3):



Foru,® € C®,a<b, A>0, set

.1:+%
(e, A) =~ [ up?
r.(A) = inf r(z,A), r*= sup r(z,A)
z€[a,b] z€[a,b]
Then
r«(A)
|@ulliapey > T”‘I)H%Q[a,b]
16 * 2 12
— 5 (1) + 77 (A) A% @720 (3.7)

9

14
Apply this estimate to the second term in §M: with u = (lvz) , P = -i—g, we get

2
”(51)—}-1)1)’/6—;))0(
v

2

)
> Oir(A) “/ 2
H1[0,T] U ll2po, (1))

— Ca(r*(8)A% +1) ||5U”iz[o,Z(T)]

2

- 02”61)”?11[0,Z(T)]

where Cy, C;, and C3 are uniform for v in bounded sets in Hlloc' Thus if év is
smooth — so that ||6v||p1, ||6v||z2 and || f év||z2 are comparable — and if v" is
uniformly big relative to ||v||g1, locally on a length scale of A, and A is small
enough, — then

”(SM”H1[0,T] > CI|5U||L2[O,Z(T)] . (3.8)

Define Sy = S; o M. Combining (3.8) with (2.5) we see that if in addition
||6v]|z2 is big enough relative to ||6v||z1, then

1651 20,217 2 Cll6v || L2g0,2(1y;

(presuming év = 0 in (Z[T}, Z[T] + Z;) in order not to have to worry about the
“margin correction”). That is, 63 is coercive, in a certain sense, for very smooth
év. On the other hand it is plain that 65 is coercive for oscillatory év.

Unfortunately, that’s as far as the purely 1-D problem goes. If §v is neither
purely smooth nor purely oscillatory, it is possible to arrange for the two parts of
6M to very nearly cancel, even when v satisfies the “uniform roughness” condition
sketched above, so that §S cannot possibly be coercive.

The way out is to remember — from the beginning of §2 — that each choice of
sound speed profile c(z) (keeping p constant still) gives a suite of one-dimensional
problems with plane-wave velocities

v(2,€) = c(2)(1 = ¢*(2)€?)7% .

The change-of-variables operator M and the seismogram operators Sy thereby ac-
quire dependence on ¢ as well, of course. The perturbation in v is related to the
perturbation in ¢ by
2¢2\-3
dv = c(l — ¢*£*) 2



SO
z §e

6M = (1-¢)7F e—ed(1- )t [ ;(1—&’52)-%]

z=¢

It is not surprising that, while éM can be made to vanish at one value of ¢, it
cannot be made to vanish over a range of ¢ simultaneously. In fact, a coercivity
estimate is possible of the form

16 M| 2 (fo, 71 x [eminsman)) = C €] 22p0,2(1)]

when C is “rough enough.”

The preceding is only the barest sketch of an argument, of course. In Symes
(1988) we have shown that all of the choices mentioned above can actually be made.
The end result is the identification of a class £ Hllo of velocity profiles ¢ and
of suitable “elliptic” kernels f which permit stable solution of the inverse problem.
More precisely, for each elliptic kernel f, there exists a neighborhood V; of S;(X)
in Lfoc and a locally Lipschitz map Iy : V; — Lfoc satisfying

Is(Sf(c))=c for c€X.

When f is “bandlimited,” i.e. smooth but obeying a quasi-elliptic estimate like
(2.6), a similar result is obtained via regularization: if the “upper bandlimit” pa-
rameter K is small enough, a stable inverse map I exists for which [I;(.S;(c)) — ]
is small — as usual with regularization, one does not obtain exact recovery of the
model. The degree of error (for consistent data in S¢(X)) can be made as small as
one likes, at the usual price of degradation of stability.

The construction of I depends on a variational problem of least-squares type.
This variational problem has served as the basis of a computer program to solve
the inverse problem numerically, which has yielded quite promising results when
applied to both synthetic and field seismic data. For details see Symes (1988),
Carazzone and Symes (1989), and references cited there.

4. Very Rough Models and Homogenization. The sedimentary crust, amongst
other real materials, does not appear to possess the smoothness relative to wave-
lengths and other scales necessary to make plausible direct application of the results
of the last section. Instead, very rough models may be approzimated in a weak sense
by smooth ones, provided that a dichotomy of length scales is present.

For 1-dimensional wave propagation, a version of such an approximation scheme
may be based on the quantitative homogenization estimates developed by Bam-
berger et al. (1979). Specialized to the present context, this estimate amounts
to

155lea] = Selealllzzpo, oy < Cli fllareawyT(ers c2)
for log ¢y, loge; € L R’ The pseudo-distance T is defined by

[+ (g am)

fleve) = 2,
_2_

where Z is chosen sufficiently large.



If ¥ is the set of models described in the previous section, V; the neighborhood
of S¢(X), and f is a “quasi-elliptic” but smooth kernel, we can associate to the
pair (X, f) the set ¥; of loge € L . for which Sy[c] € V;. It is evident from the
definition that Yy contains quite a bit more than an L?-neighborhood of £. An
easy way to see this is to pick a Dirac kernel ¢ € Cg°(IR), ¢(0) # 0, f¢ = 1, and set
for € > 0 ¢c(z) = e¢(e712). Roughly, € is the “width” of ¢, and the convolution
with ¢ averages on the length scale e. Then for logc € L.

I'(c, ¢ * c—2)_% = O(e) .

Thus ¢ € Xy if ¢ * ¢ € X for € small enough that S¢[c] € V;. Such ¢ can have
arbitrarily large variation, provided that it is on a sufficiently fine length scale that
averaging over length scale e = O(|| f|| ;) yields an element of ¥. X is characterized
also by being a subset of a large ball in H?, the radius being determined by the
“upper bandlimit” of the kernel (i.e. K, in 2.6). Thus the scales permitted in
Y are determined by this upper bandlimit. All significant components at shorter
scales must be removed (essentially) by averaging on the length scale e. Thus the
difference ¢ — (¢ * ¢=2)~% must be oscillatory on a scale smaller than €, and much
smaller than that permitted by membership in X.

These choices of scale can be made precise. In an unpublished technical re-
port, the author made most of these choices explicit and investigated the question
numerically. The results lent credence to the heuristic rule:

For effective recovery of the layered medium, the velocity profile must consist
of a “core” medium which oscillates on a wavelength scale, and perhaps a
very rough component oscillating on a subwavelength scale.

Such a clean frequency dichotomy is probably not seen in nature; in fact some
evidence exists that actual velocity distributions are fractal. Thus oscillatory com-
ponents exist at all scales, and the preceding heuristic condition is not satisfied.
It is not clear whether the “mildly rough” results bring with them results about
media without the frequency dichotomy described here.

Papanicolau, White, and colleagues have studied another class of media admit-
ting a dichotomy of length scales (Burridge et al. (1989)). The principal difference
in problem setting between our work and theirs is in the relation between the source
frequency content and the length scale of oscillation in the coefficients. Qur work
pertains to a fixed source, hence fixed bandwidth, and the limit as the length scale
for the coefficients goes to zero. White et al. consider instead a family of sources
with frequency increasing roughly as the square-root of the frequency of oscillation
in the parameters (after normalization to fixed propagation time). Thus in their
work the oscillations in the coefficient continue to interact with the oscillatory en-
ergy in the solution, which does not approach that of a smooth-coefficient equation.
It is not clear which asymptotic regime is more important in explaining practical
phenomena. Most likely both regimes are present in real data.

5. Multidimensional Problems. We return to the problem specified at the be-
ginning of Section 2, viz. linear acoustics, but this time in dimension n > 1 and




with the coefficients allowed to depend on all the space variables. We introduce
“energy” into the system via a “point source,” i.e. a right-hand side with point
support in z:

1 0? 1
(p(a:)c2(x) Ot? v p(x)v) u(z,t) = f(t)é(z) w=0, t<0
Once again we are interested in estimates which hold for elliptic f, uniformly over

bounded sets of coefficients in Sobolev spaces and especially in estimates for time-
like traces.

Very little is known about these problems, and the following discussion is meant
mainly to illustrate some of the remaining difficulties. Some partial results may
be found in Rakesh (1988), Sacks and Symes (1985), and Sun (1987). Two major
differences emerge compared to the layered case. The first of these is that con-
siderably more coefficient regularity is needed to assure the optimal regularity of
timelike traces. To fix ideas, take f = §(=25) above, and assume that logc € C*®
is fixed. Near z =t = 0, Hadamard’s construction (Courant and Hilbert, Ch. 6)
yields .

u(z,t) = a(z)p~2(x)H(t — 7(z)) + Ro(z, 1)

where 7(z) is the geodesic distance from z to 0 in the metric ¢™2 5, dz;dz; , a is
a C'* transport coefficient, and R, vanishes at t = 7(z). This expression remains
correct so long as we encounter no point conjugate to 0, i.e. as long as no caustics
appear in the wave-front, which we assume (the complication in this analysis arising
from caustics have not been understood, nor has the effect of changing ¢ — see
some discussion below). Thus u may as well be viewed as the solution of an interior
characteristic Cauchy problem.
It is natural to attempt to bound the energy norm: With

Br = {z:71(2)<T}
Cr = {(z,t) : t=7(z) <T}

we get the standard energy identity

1 | 1
/ dz [—5 + - |Vu|2J =/ -
Br pc p Cr p

The transport equation (Hadamard’s construction, above) yields all of the deriva-
tives of u tangential to Cr, but the normal derivative is also needed to evaluate
the R.H.S. of the energy identity. The normal derivative — or equally well, the
t-derivative — trace on C7 is determined by the second transport equation,

2

Ou
ot

Ju
E't—VT + VU

V1-Va;+ (b+ Viogp-Vr)a; =
(A~ Vlogp-V)(ap™?)
Ju

t_;{l;)*. E—t-(:l:,t) = a;(z) .



Here b depends on the bicharacteristic geometry, hence on ¢. Thus second deriva-
tives of p are involved, and will not be “integrated out,” an important difference
with the layered case.

A certain amount of evidence suggests that the proper way to resolve this and
other problems is to impose microlocal restrictions on the coefficients. Fundamen-
tally, all of this evidence rests on Rauch’s Lemma (Rauch, 1979), which we state
here in a lopsided form suitable for application to linear problems, using now-
conventional notation (Beals and Reed, 1984):

Suppose that for some (zo,&) € T*IR", the distributions a,u satisfy a €
H* N H (20,&0), u € H' N HY J(z0,&) with 0 < t < s, g < t+r — s,
q<s+t—nf2. Thenau € H' N HY ,(z0,&).

That is, H* N H (20, &) is an (H* N HY,,(z0,&))~algebra. The lemma is usually
stated for t = 5, ¢ = r, as is appropriate for applications to nonlinear problems.
For linear problems such as that considered here, the solution may well have a
different degree of smoothness than the coefficients — in fact, the solution u above
is expected to have a jump discontinuity. Such strong singularities are much more
difficult to treat in nonlinear problems, and most of the results based on Rauch’s
lemma and related ideas concern much weaker singularities — see e.g. Beals and
Reed (1982, 1984). Nonetheless, we expect to be able to understand the relation
between the coefficient and solution regularity away from the leading singularity
or wavefront. For example, a quantified version of Rauch’s lemma enables one
to prove microlocal energy estimates for first-order hyperbolics like the transport
equation above. In the present instance, we obtain a; € H*if p € H**2, s > 14+n/2
(n = number of space dimensions) plus microlocal conditions. Then Theorem 2.1 in
Beals and Reed (1984) implies that a; € H2}! away from the characteristic variety
of the transport operator. One then iterates this construction to produce higher
energy estimates for u interior to the light cone.

Another piece of evidence in favor of microlocal coefficient classes is the following
trace theorem due to Bao (1989): it concerns the case ¢ = 1.

Suppose s > 3 +n/2 and
(i) |& - A-Vo V]|u=fin R
(it) u, f =0 fort << 0
(iii) T is a closed conic set containing
{(2,8) : [l < €€, |2| < €}

Jor small € > 0 (here &' = (&1,...6n-1))
(iv) w,Vo, and f € H-' N H? ,(T)
Then for ¢ € C(R™),
¢ul:pn=0 € Hs ‘

Thus traces are as regular as the solutions, and particularly as regular as the
coefficients allow — but now at a higher degree of smoothness than in the layered
case, and only with microlocal restrictions against tangential oscillations.



A great deal remains to be said along these lines, but at least one can imagine
that the problems are in some sense “technical.” The very delicate dependence of
the solution on the principal part of the wave operator — physically on the veloc-
ities — poses a quite different sort of difficulty, which forms the second topic of
this section. For layered media and plane-wave solutions, the travel-time transfor-
mation was available to regularize this dependence — by making the coefficients
of the principal part constant! No such possibility exists for n > 1. To see how
the essential role of the travel-time transformation may nonetheless be filled, we
examine once more the one-dimensional case.

Recall from Section 3 that we could write

M[r)(t) = / dk a(t, k)e<UI0k (k)

where r = dv/dz and is presumed to have compact support, and ([r] is the corre-
sponding inverse travel-time function.
Consider more generally a family of oscillatory integral operators of the form

Glulg(a) = [ dy [ db a(usz,y, 8)e = r0g(y)

where the symbol a and phase ¢ are Gateaux-differentiable functions of v €
Cs°(IR), to begin with, and assume that G is elliptic. From the calculus of such
operators, it follows that the formal perturbation

§G[u; Suld(z) = / dy / do (6a(u, bu; z,0)
+ ia(u; 7, 0)8¢(u, bu; z,y,0)) (=0 g(y)
is of order higher than that of G, and can be expressed as
6Glu, 6u] = G[u]P[u, 6u] = P[u, 6u]Glu]

where P, P are elliptic pseudo differential operators of order > 0 with symbols
linearly dependent on éu. The travel-time transform actually has the form

u— Gluju .

Such operators can be said to “have” a canonical relation, even though they are
nonlinear — namely, that of G[u]. When u changes the canonical relation changes,
shifting (infinitesimally: differentiating) the singularities of the image. In order
that 6G may have the same sort of bounds as G — in terms of §u and of u — it
is necessary to compose G' with another (necessarily equally irregular) transform,
having the inverse canonical relation. That is, we need to find H and @ so that
@ = G o H has a derivative §@Q with the same qualitative estimates as Q itself. It
is natural to look for H also in the form of an oscillatory integral, and to expect @
to be pseudo-differential — this is exactly what happens in the case of travel-time.
That is, we seek H[] so that

Qu] = G[H[ula) Hq]



is pseudodifferential, with symbol depending smoothly on .

In the case at hand, H[@] is essentially uniquely specified by this requirement,
since its canonical relation is specified. To construct H explicitly, it is necessary
to explain first the canonical relation associated to the seismogram operator. For-
tunately, the linearized seismogram operator has the same canonical relation, and
this latter has been discussed extensively — see e.g. Beylkin (1985), Rakesh (1988),
for example. The matter is clearest when the oscillatory integral G is expressed as
a generalized Radon transform (the viewpoint emphasized by Beylkin).

For simplicity we discuss only the two-dimensional case. Let R = {(z1,z3) :
—X <z € X,0 < 2, £ Z} and suppose that C is a class of C! metrics of the
form ¢=? 3", dx;dz; in R for which the geodesics between points in R and points in
the surface segment [—Xg, Xg] x {0}, zr < X, have no conjugate points and lie
entirely in R. This hypothesis holds for ¢ = const., hence for a C?-neighborhood
of the constants. This “no-caustics” hypothesis is necessary if results as simple as
those to follow are to hold, as is shown in Percell’s thesis (1989).

Denoting by 7(z,y) the geodesic distance from z to y, the reflection phase for
Yy € R, z,¢[—Xg, Xp]:

¢(c;zr5y) = 7(0,y) + (v, (2, 0))
is well-defined for ¢ € C. For f € C(R) define

Gle]f(zr,t) = /y;¢(c-a:r,y)=t d

That is, G[c|f is the generalized Radon transform of f over the equal-time curve
{y : #(¢;zr,y) = t} generated by C. For ¢ = const., the equal-time curves are arcs
of ellipses with focii at (0,0), (z,,0) and radii proportional to ¢.

For smooth ¢, the impulsive seismogram operator

Sle] = u|

2=0

where | &
U

Ei_a.ﬁ_Auzé(t)a(x) u=0, t<0

can be expressed as

Sle] = ple]Glele

for a suitable pseudodifferential p[c], so S “has the same canonical relation as G.”
The class of operators with the inverse canonical relation to that of G[c] all
differ from the weighted adjoint operator

X
G[c]o(y) = /XR dz,b(zr, XR, y)0(2r, ¢(c; 2r,y))
—AR

by composition with the pseudodifferential operator.

Note that G*[c] maps functions 9(z,,t) of “receiver” and “time” to functions of
y, i.e. space — in exploration seismic parlance, G*[c] is a migration operator. The
weight b has been included for generality — changing it will change the result by
a pseudodifferential operator.



Since G*[c] depends on ¢, it is not exactly right. We need an operator defined
in terms of functions é&(z,,t), which will function as the equivalent of the travel-
time velocity ¥ of Section 3. We define such an operator in terms of an auxiliary
problem, as follows.

The “trick” is to construct directly the reflection phase. Note that

¢(1;w7‘7 y) = Iyl + 1y1 - xr’y2)| =: Qo(wra y) .

We will need to control first derivatives of the reflection phase — but ®, is not C*
near y = 0, y = (z,,0). So we define instead for 6 >0, k =1,2,...

Pt = {®€C%~Xg Xr] x R):

q)(:t,.’ y) = (Do(IBT, y) + Aq)l(‘rr, y)a
A®, € C*([~Xgr, Xg] x R) and
Q1(zr,y) =0 if y2 < 6.}

It is easy to see that if ¢ € C satisfies c(y) = 1 for y2 < §, then é(c;-, ) € PL. We
give P} the C* topology in the obvious way.

Pick v € C*(IR) with y(y) = 0 for y2 < 6, v(y) = 1 for y, > 26. For
7 € C3([-Xr, Xgr] x R"), ® € P§ define

Xn
o.() = [ o dori(zr, 2(zy))
v[®,7] = 1+ ~9.[F]

We consider the fixed-point problem
T:® := ¢(v[®,7];-,-) =D .

If & = @[] solves this fixed-point problem, then the operator ®. has the same
canonical relation as G*[v[®, 7]], hence the inverse canonical relation to G[v[®, 7]
or S[v[®,7]]. Hence

7 — S[u[®[F], 7]

is “nonlinear pseudodifferential” and has some hope of extending to a differentiable
map with coercive derivative on interesting classes.

Note that if ||7||cx+1 is sufficiently small, and ® = ®; + ¢, as above with
|®1]lcr < 1, then v[@, 7] is positive, and even a member of C with v[¢,](y) = 1 if
y2 < 6. Thus T; maps P} into itself for ||7||cx+: small enough. Also, ®,[0] = 0, so
v[$,0] = 1 for any ® € Ps. Thus To® = ¢, and therefore Ty has a unique fixed
point, namely ®,. If ®, &' ¢ P}

@:@0—{-@1, q)I:(Do-}-@Il,
”(1)1”01 <1, ”QIIHC1 <1,

then it is easy to estimate

1247 = ®L [ llcxry < 1@ — lior IFlloren



so
[0[@, 7] = v[®, #llox < VIFllgns[|@1 — Bllc
for V depending on é.

Next we need a few facts about the mapping from a velocity c to its travel-time
function 7(z,y). We will assume that z; = 0 and ¢(y) = 1 for y, < 6. Then for
|t —y| < 6, 7(z,y) = |z — y|. For y with y, > §, if ¢ € C then 7(z,y) is a C*
solution of the eikonal equation

Avrt=1.
If moreover
ceCy={ceC:|logc|onr < M}

then we obtain the obvious estimate

I7llexmy < Oy

for a suitable constant C%; > 0.
We also need bounds on the second derivatives of 7, which can be got as follows.
The Hamiltonian system associated to the eikonal equations is
Ve
o
Denote by (y(¢,y1),£(t,y1)) the solution starting (at ¢t = 0) at

y=c’n f=—cVcp|*=—

1 — U —Y2
y ’57 b .
b Ty o=yl

Then

T(y(t,m),z) = 7((y1,6),2) +1
Vr(y(t,y),x) = n(t, 1) .

From differentiation of the eikonal equation

or _30c
A\ Vé;:: = —2c axi

o7

we see that the derivative of 2~ along the rays is bounded by ||c||1. On the other

hand,

Jy \’ . a4

(a_yl> (t,y1) = a—yl(c (y(t, y1))n(t, v1))

= 2elylt,00) [Velytn)) - 2t - 7(ts0)
+ 1) 56 w)
(—).(ty) = 2 (Viogely(t, )
oy s My ,
dy

= VVliogc(y(t,y1)) - —(,E(t,yﬂ



whence a standard O.D.E. estimate gives

Jy
t
O ( yl)

< const. ||log 0”02(R)

when y(t,y1) € R. The assumption that no conjugate points exist implies that

(t,y1) — y(t,y1) is a global coordinate system in R, so % and gy are linearly

independent. Moreover, it is possible to show that the condition number of

Sy
Yy

< C(1 —t||Vioge|ler)™

(this is an explicit bound guaranteeing global geodesic coordinates). Since

on\" _ 9y \' _ 9y
(3311) = (VVT ayl) = VVliogec B0

the condition number estimate shows that
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IVV7lioe < C [(1 = t[[VIogells) M|V log cller +1]

Define
Cirp={ceC:|[Vioge|c: < P} .

Then if P is small enough, there is a constant K; > 0 so that
c€Chp = 9(c;+,-) = Pollcr < Ka .

Next, suppose ca,cs € Cﬁ,,yp. Then

V- V2L v, vaT2—2( s 0cs -Sacl)

Oz; Ox; oz; “ Jz;
. 07’1 672 072
= VTl'V(a—xi— 8w,) +(VT1—VT2)'Va$i .

Integrating along the rays for 71 and using 7, = 7, at y, = 6 we get
1
Im = 72ller < Lller — ealle
where L is a function of M and P (and in particular of ||V logci||c1), whence
I6(c1; ) = dlezi s Mler < Lller = eaflor -
Now we are ready to string the various facts together. Set



For ® € B,

[0[@,7] — 1lle> < [|8[®, 7] — 8[®o, Flllc2 + ||5[®o, 7] — 5[Po, 0] |2
< VEs|rlles + 1|1.[flllce
<

(VK2 + W)|r|lce

where W is an upper bound for the length of the curves z, — (z,,®(y,z,)) as y
ranges over It and ® over B.
Consequently there exists @ > 0 so that if ||[f]|c: < @, then & € B implies

v[®,7] € Cyrp -

() depends on V, M, and P (and on K, and W, though these depend on M and
P.) Consequently, if ® € B,||r||s < @, then

|¢(v[®,7]; ;) — Rollez < Ko s
i.e. T; maps B into itself. Next note that for ®;,®, € B,

[ T5[@1] = T{@:)ller < Llo[®1, 7] — v[®a, 7l
< VL|[Flle2|@1 — @5l

Thus by making @ possibly smaller yet, we can arrange that T is a contraction on
B — but only in the sense of C!, not C%. So we don’t get a solution of the fixed
point problem in B — nonetheless, the sequence of iterates {T7[®,]} is

(a) bounded in C?
(b) convergent in C! to a C?! solution of T;® = &.

This result is only a glimpse of the actual state of affairs concerning the “multi-
dimensional travel time transformation,” which the author expects to occupy a
central position in the study of wave propagational inverse problems.
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